6 resultados para slow cooling storage

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Science Foundation Ireland (CSET - Centre for Science, Engineering and Technology, grant 07/CE/I1147); Scientific Foundation Ireland (ITOBO (398-CRP))

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the area of food and pharmacy cold storage, temperature distribution is considered as a key factor. Inappropriate distribution of temperature during the cooling process in cold rooms will cause the deterioration of the quality of products and therefore shorten their life-span. In practice, in order to maintain the distribution of temperature at an appropriate level, large amount of electrical energy has to be consumed to cool down the volume of space, based on the reading of a single temperature sensor placed in every cold room. However, it is not clear and visible that what is the change of energy consumption and temperature distribution over time. It lacks of effective tools to visualise such a phenomenon. In this poster, we initially present a solution which combines a visualisation tool with a Computational Fluid Dynamics (CFD) model together to enable users to explore such phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis initially gives an overview of the wave industry and the current state of some of the leading technologies as well as the energy storage systems that are inherently part of the power take-off mechanism. The benefits of electrical energy storage systems for wave energy converters are then outlined as well as the key parameters required from them. The options for storage systems are investigated and the reasons for examining supercapacitors and lithium-ion batteries in more detail are shown. The thesis then focusses on a particular type of offshore wave energy converter in its analysis, the backward bent duct buoy employing a Wells turbine. Variable speed strategies from the research literature which make use of the energy stored in the turbine inertia are examined for this system, and based on this analysis an appropriate scheme is selected. A supercapacitor power smoothing approach is presented in conjunction with the variable speed strategy. As long component lifetime is a requirement for offshore wave energy converters, a computer-controlled test rig has been built to validate supercapacitor lifetimes to manufacturer’s specifications. The test rig is also utilised to determine the effect of temperature on supercapacitors, and determine application lifetime. Cycle testing is carried out on individual supercapacitors at room temperature, and also at rated temperature utilising a thermal chamber and equipment programmed through the general purpose interface bus by Matlab. Application testing is carried out using time-compressed scaled-power profiles from the model to allow a comparison of lifetime degradation. Further applications of supercapacitors in offshore wave energy converters are then explored. These include start-up of the non-self-starting Wells turbine, and low-voltage ride-through examined to the limits specified in the Irish grid code for wind turbines. These applications are investigated with a more complete model of the system that includes a detailed back-to-back converter coupling a permanent magnet synchronous generator to the grid. Supercapacitors have been utilised in combination with battery systems for many applications to aid with peak power requirements and have been shown to improve the performance of these energy storage systems. The design, implementation, and construction of coupling a 5 kW h lithium-ion battery to a microgrid are described. The high voltage battery employed a continuous power rating of 10 kW and was designed for the future EV market with a controller area network interface. This build gives a general insight to some of the engineering, planning, safety, and cost requirements of implementing a high power energy storage system near or on an offshore device for interface to a microgrid or grid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, a magneto-optical trap setup is used to laser cool and confine a cloud of 85Rb. The cloud typically contains 108 atoms in a 1 mm3 volume at a temperature in the region of the Doppler Limit (146 _K for 85Rb). To study the cold cloud, a subwavelength optical fibre - a nanofibre, or ONF - is positioned inside the cloud. The ONF can be used in two ways. Firstly, it is an efficient fluorescence collection tool for the cold atoms. Loading times, lifetimes and temperatures can be measured by coupling the atomic fluorescence to the evanescent region of the ONF. Secondly, the ONF is used as a probe beam delivery tool using the evanescent field properties of the device, allowing one to perform spectroscopy on few numbers of near-surface atoms. With improvements in optical density of the cloud, this system is an ideal candidate in which to generate electromagnetically induced transparency and slow light. A theoretical study of the van der Waals and Casimir-Polder interactions between an atom and a dielectric surface is also presented in this work in order to understand their effects in the spectroscopy of near-surface atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterprise Ireland (Project CFTD07325). European Commission (EU Framework 7 project Nanofunction, (Beyond CMOS Nanodevices for Adding Functionalities to CMOS) www.Nanofunction.eu EU ICT Network of Excellence, Grant No.257375)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photonic crystals (PhCs) influence the propagation of light by their periodic variation in dielectric contrast or refractive index. This review outlines the attractive optical qualities inherent to most PhCs namely the presence of full or partial photonic band gaps and the possibilities they present towards the inhibition of spontaneous emission and the localization of light. Colloidal self-assembly of polymer or silica spheres is one of the most favoured and low cost methods for the formation of PhCs as artificial opals. The state of the art in growth methods currently used for colloidal self-assembly are discussed and the use of these structures for the formation of inverse opal architectures is then presented. Inverse opal structures with their porous and interconnected architecture span several technological arenas - optics and optoelectronics, energy storage, communications, sensor and biological applications. This review presents several of these applications and an accessible overview of the physics of photonic crystal optics that may be useful for opal and inverse opal researchers in general, with a particular emphasis on the recent use of these three-dimensional porous structures in electrochemical energy storage technology. Progress towards all-optical integrated circuits may lie with the concepts of the photonic crystal, but the unique optical and structural properties of these materials and the convergence of PhC and energy storage disciplines may facilitate further developments and non-destructive optical analysis capabilities for (electro)chemical processes that occur within a wide variety of materials in energy storage research.